Jammed elastic shells - a 3D experimental soft frictionless granular system †

Jissy Jose,*a Gerhard A. Blab,^{b‡}Alfons van Blaaderen and Arnout Imhof a

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXXX 200X DOI: 10.1039/b000000x

1 Supporting Information

Atomic force microscopy (AFM) The thickness of the shell was measured using Atomic Force Microscopy (AFM, Digital Instrument, Nanoscope) in tapping mode. Samples for<math>AFM were prepared by applying a drop of o suspension of the shells in ethanol (after removing the *PDMS* core) onto a glass cover slide. The collapse of the shells, due to drying, leads to plateaus in the height profile that correspond to twice the thickness of the shell.

Fig. S1 (A) *AFM* image of a dried shell, after removing the *PDMS* core by washing with ethanol. (B) The height profile taken along the line drawn through the collapsed capsules shows plateaus from which we obtained a shell thickness of d = 56 nm.

Fig. S2 Plots of radius of smallest enclosing circle R_{SEC} as a function of position along *Z* for (A) a typical ambiguous particle and particles containing (B) 2, (C) 6 and (D) 10 dimples. Except for the ambiguous particle, the data points obtained from image analysis (circles) are nicely fitted (line) by the equation of a circle, $R_{SEC}^2 = R_t^2 - (Z - Z_c)^2$.

Fig. S3 Distribution of the fractional part of the particle coordinates X_c , Y_c and Z_c found using the image analysis routine in an image volume 99.94 × 99.94 × 66 μ m³. The histograms are almost flat in all three graphs which is a clear indication that particles are located with sub-pixel resolution.

This journal is © The Royal Society of Chemistry [year]